Acta Cryst. (1988). C44, 176–179

Structure of Bis(5,7-dibromo-8-quinolinolato-N, O) bis(pyridine) nickel(II)—Pyridine (4/5)

BY S. GARCÍA-GRANDA,*† C. JANSEN, PAUL T. BEURSKENS AND H. J. J. BEHM

Crystallography Laboratory, University of Nijmegen, Toernooiveld, 6525 ED Nijmegen, The Netherlands

and F. Gómez-Beltrán

Departamento de Química-Física, Facultad de Química, Universidad de Oviedo, Calvo Sotelo s/n, 33007 Oviedo, Spain

(Received 16 April 1987; accepted 31 July 1987)

 $[Ni(C_{9}H_{4}Br_{2}NO)_{2}(C_{5}H_{5}N)_{2}].1.25C_{5}H_{5}N_{5}$ Abstract. $M_r = 919.67$, monoclinic, $P2_1/c$, a = 21.261 (3), b = 38.913 (7), c = 18.265 (2) Å, $\beta = 112.97$ (1)°, V= 13913 (4) Å³, Z = 16, $D_r = 1.76 \text{ Mg m}^{-3}$, Cu Ka radiation (graphite monochromator, $\lambda = 1.54178$ Å), $\mu(\text{Cu } K\alpha) = 65.60 \text{ cm}^{-1}, T = 290 \text{ K}, F(000) = 7208.$ Final conventional R factor = 0.060, wR = 0.058 for 5983 observed reflections and 1467 variables. The structure consists of four Ni complexes, showing a similar geometry, per asymmetric unit. There are also five independent pyridine units stabilizing the molecular packing. The central Ni atom is pseudo-octahedrally coordinated by two 5,7-dibromo-8-quinolinol ligands and two pyridine ligands in cis positions. Distances and angles are normal [average Ni-N(quinoline) 2.07 (2), Ni-N(pvridine) 2.11 (2), Ni-O 2.04 (1) Å].

Experimental. A dark yellow crystal approximately $0.50 \times 0.10 \times 0.10$ mm was used during the measurements. Crystals were obtained from recrystallization in pyridine/water mixtures. Throughout the experiment $Cu K\alpha$ radiation was used with a graphite-crystal monochromator on a Nonius CAD-4 single-crystal diffractometer. The unit-cell dimensions were determined from the angular settings of 25 reflections $(18 < \theta < 28^{\circ})$. The intensity data of 22 689 reflections (one quarter sphere up to $\theta = 65^{\circ}$), hkl range from (0,0,-21) to (24,43,21), were measured, using the ω -2 θ scan technique, with a scan angle of 1.50° and a variable scan rate with a maximum scan time of 20 s per reflection. The intensity of the primary beam was checked throughout the data collection by monitoring three standard reflections every 30 min. The final drift correction factors were between 0.98 and 1.09. On all reflections profile analysis was performed (Lehmann & Larsen, 1974; Grant & Gabe, 1978); empirical absorption correction was applied, using ψ scans (North,

Phillips & Mathews, 1968), correction factors were in the range 0.61 to 1.00. Some doubly measured reflections were averaged, $R_{int} = 0.068$, resulting in 21616 unique reflections of which 5983 were observed with $I > 3\sigma(I)$. Lorentz and polarization corrections were applied.

The structure was solved using *DIRDIF* (Beurskens *et al.*, 1983) employing automated vector-search rotation functions, followed by reciprocal-space translation functions (*TRACOR*; Beurskens, Gould, Bruins Slot & Bosman, 1987), on a known part of the assumed structure (one Ni atom with two 5,7-dibromo-8-quinolinol ligands taken from the analogous 5,7-dichloro compound (García-Granda, Beurskens, Behm & Gómez-Beltrán, 1987) which gave all atoms except the atoms of the non-bonded pyridine molecules and the hydrogen atoms.

The structure was refined by least squares using SHELX (Sheldrick, 1976); because of the size, a block-matrix refinement was used. Each independent complex was refined in a separate block and the solvent molecules in another.

Atomic scattering factors were taken from International Tables for X-ray Crystallography (1974). Isotropic least-squares refinement converged at R = 0.157. At this stage an empirical absorption correction was applied (Walker & Stuart, 1983), resulting in a further decrease of R to 0.144.

During the final stages of the refinement the positional parameters and the anisotropic thermal parameters of the atoms of the four Ni complexes were refined. Five non-bonded pyridine rings, of which one is disordered, were found from difference Fourier synthesis and were included in the refinement as rigid groups with ideal geometry. It could not be distinguished which of the ring atoms were the N atoms. Therefore all ring atoms were treated as C atoms. The atoms of the disordered pyridine rings were refined with fixed isotropic temperature factors of 0.13 Å^2 . Of the 97 H atoms present, 37 were found from difference Fourier synthesis, and were included in the refinement with ideal geometric bond angles and at a distance of

© 1988 International Union of Crystallography

^{*} Author to whom correspondence should be addressed.

[†] Permanent address: Departamento de Química-Física, Facultad de Química, Universidad de Oviedo, Calvo Sotelo s/n, 33007 Oviedo, Spain.

Table 1. Fractional positional and equivalent isotropic thermal parameters with e.s.d.'s in parentheses

$U_{\rm eq} = \frac{1}{3} \sum_{i} \sum_{j} U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$

		x	У	Z	$U_{\rm eq}({ m \AA}^2 imes 10^3)$		<i>x</i>	У	Z	$U_{\rm eq}({\rm \AA}^2 imes 10^3)$
$ \begin{array}{c} N_{10} & 0.232 (2) & 0.0035 (1) & 0.033 (2) & 43 (2) & N_{10} & 0.4469 (2) & 0.236 (1) & 0.236 (2) & 24 (2) \\ C12 & 0.351 (10) & -0.0025 (2) & 0.227 (12) & 44 (10) & C12 & 0.548 (10) & 0.038 (6) & 0.184 (9) \\ C14 & 0.132 (10) & 0.0074 (3) & 0.127 (12) & 44 (10) & C12 & 0.548 (10) & 0.208 (6) & 0.0998 (14) & 44 (1) \\ C14 & 0.132 (10) & 0.0074 (3) & 0.127 (12) & 44 (10) & C12 & 0.548 (10) & 0.208 (6) & 0.0998 (14) & 44 (1) \\ C14 & 0.132 (10) & 0.0074 (3) & 0.127 (12) & 44 (10) & C13 & 0.445 (10) & 0.128 (6) & 0.0998 (14) & 44 (1) \\ C16 & 0.244 (11) & 0.104 (3) & 0.225 (11) & 25 (11) & C13 & 0.445 (10) & 0.127 (10) & 0.0998 (14) & 44 (10) \\ C16 & 0.244 (10) & 0.104 (3) & 0.225 (11) & 24 (10) & C16 & 0.575 (10) & 0.224 (5) & 0.1522 (11) & 34 (11) \\ C11 & 0.245 (4) & 0.0460 (3) & 0.126 (11) & 24 (10) & C18 & 0.575 (10) & 0.224 (5) & 0.1522 (11) & 34 (11) \\ C11 & 0.245 (4) & 0.0460 (3) & 0.668 (11) & 40 (12) & C18 & 0.575 (10) & 0.224 (5) & 0.1522 (11) & 34 (11) & 41 (10) \\ C11 & 0.245 (4) & 0.0460 (3) & 0.668 (11) & 40 (12) & C18 & 0.575 (10) & 0.224 (5) & 0.1522 (11) & 40 (12) \\ C11 & 0.245 (4) & 0.0426 (3) & 0.236 (4) & 0.236 (5) & 0.236 (7) & 0.446 (11) & 0.248 (11) & 0.248 (11) & 40 (12) \\ C12 & 0.575 (10) & 0.024 (10) & 0.575 (10) & 0.275 (10) & 0.237 (10) & 0.237 (11) & 0.448 (11) & 41 (11) \\ C14 & 0.493 (11) & 0.0436 (10) & 0.595 (11) & 0.575 (11) & 0.242 (11) & 0.248 (11) & 41 (11) \\ C14 & 0.493 (11) & 0.0436 (10) & 0.556 (11) & 30 (11) & C24 & 0.6936 (11) & 0.338 (10) & 0.418 (11) & 41 (11) \\ C24 & 0.438 (11) & 0.0438 (10) & 0.535 (11) & 0.338 (10) & 0.418 (11) & 41 (11) \\ C24 & 0.438 (11) & 0.0438 (10) & 0.535 (11) & 0.338 (10) & 0.418 (11) & 41 (10) \\ C24 & 0.438 (11) & 0.0438 (10) & 0.535 (11) & 0.338 (10) & 0.418 (11) & 41 (11) \\ C24 & 0.438 (11) & 0.0438 (10) & 0.538 (11) & 0.238 (10) & 0.338 (11) & 0.418 (11) & 41 (11) \\ C24 & 0.438 (11) & 0.0438 (11) & 0.058 (11) & 0.058 (11) & 0.338 (11) & 0.338 (11) & 0.138 (11) & 0.138 (11) \\ C24 & 0.438 (11) & 0.0438 (11) & 0.058 (11) & 0.058 (11) & 0.058$	Molecule /	A				Molecule	С			
$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	Ni	0.2282 (2)	0.0035 (1)	0.3351 (2)	45 (2)	Ni	0.6869 (2)	0.2565(1)	0.2756(2)	45 (6)
$ \begin{array}{c} 11 \\ 0 & 0.581 \\ (0) \\ 0 & 0.008 \\ (0) \\ 0 & 0.003 \\ (0) \\ 0 & 0.003 \\ (0) \\ 0 & 0.003 \\ (0) \\ 0 & 0.003 \\ (0) \\ 0 & 0.003 \\ (0) \\ 0 & 0.003 \\ (0) \\ 0 & 0.003 \\ (0) \\ 0 & 0.003 \\ (0) \\ 0 & 0.003 \\ (0) \\ 0 & 0.003 \\ (0) \\ 0 & 0.003 \\ (1) \\$	018	0.1946 (6)	0.0530(3)	0.3059(7)	46 (6)	018	0.0380(0)	0.2105(3)	0.1844 (0)	40 (8)
$ \begin{array}{c} c_{11} c_{132} c_{101} c_{101}$	N11 C12	0.2681(8) 0.2051(10)	0.0123(4)	0.2304 (9)	43 (8)	C12	0.5810(11)	0.2720(4) 0.3038(6)	0.1544(9) 0.1568(12)	56 (11)
$ \begin{array}{c} Cit & 0.358 (cit) & 0.0427 (cit) & 0.0427 (cit) & 0.0427 (cit) & 0.4232 (cit) & 0.0232 (cit) & 0.055 (cit) & 9 (cit) & 0.055 (cit) & 0.0427 (cit) & 0.055 (cit) & 0.0425 (cit) & 0$	C12 C13	0.3320(10)	0.0037 (6)	0.1701(13)	59	C13	0.5174(12)	0.3100 (6)	0.0903 (14)	67 (13)
$ \begin{array}{c} C_{15} & 0.256 (1) & 0.0945 (3) & 0.427 (1) & 56 (1) & C_{15} & 0.458 (10) & 0.219 (6) & 0.053 (11) & 46 (10) \\ C_{16} & 0.254 (10) & 0.053 (10) & 0.427 (10) & 56 (10) & 0.458 (10$	C14	0.3189(10)	0.0373 (6)	0.1447 (12)	58 (1.)	C14	0.4755 (11)	0.2823 (6)	0.0576 (11)	59 (12)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C15	0.2636 (11)	0.0945 (5)	0.1427 (11)	56 (11)	C15	0.4563 (10)	0.2192 (6)	0.0551 (11)	46 (10)
$ \begin{array}{c} C1 & 0 & 0.221 (10) & 0 & 0.06 (0) & 0 & 0.278 (11) & 24 (11) & 24 (11) & 24 (11) & 0 & 0.278 (10) & 0.278 (10) & 0.278 (10) & 0.278 (10) & 0.278 (10) & 0.278 (10) & 0.278 (10) & 0.278 (10) & 0.278 (10) & 0.278 (10) & 0.278 (10) & 0.278 (10) & 0.278 (10) & 0.278 (10) & 0.278 (10) & 0.278 (10) & 0.278 (11) & 0.078 (11) & $	C16	0.2266 (13)	0.1139 (5)	0.1722 (14)	69 (12)	C16	0.4754 (10)	0.1886(5)	0.0879(12)	43 (10)
$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	C17	0.2021(10)	0.1016 (5)	0.2278(12)	52 (11)	C17	0.5350(9)	0.1848(4) 0.2124(5)	0.1853(10)	32 (8)
$ \begin{array}{c} c_{11} & c_{223} c_{10} & c_{202} c_{11} & c_{202$	C18	0.2108(9) 0.2564(9)	0.0074(0)	0.2355 (11)	31 (8)	C18	0.5563 (10)	0.2452(5)	0.1502(10)	37 (10)
$ \begin{array}{c} \mathbf{r}_{13} & 0 & 2 3 5 (1) & 0 & 1 3 0 (1) & 0 & 0 5 0 (1) & 0 & 0 3 0 (1) & 0 & 0 3 0 (1) & 0 & 0 3 0 (1) & 0 & 0 3 0 (1) & 0 & 0 3 0 (1) & 0 & 0 3 0 (1) & 0 & 0 3 0 (1) & 0 & 0 3 0 (1) & 0 & 0 3 0 (1) & 0 & 0 3 0 (1) & 0 & 0 3 0 (1) & 0$	CII	0.2815(9)	0.0491(5) 0.0600(5)	0.1681(11)	40 (9)	CII	0.4926 (10)	0-2485 (5)	0.0842 (11)	40 (10)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Br15	0.2936 (1)	0.1130(1)	0.0661 (2)	81 (2)	Br15	0.3732 (1)	0.2226 (1)	-0.0398 (1)	80 (1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Br17	0-1569(1)	0-1299 (1)	0.2725 (2)	86 (2)	Br 1 7	0.5613 (1)	0.1415 (1)	0.2011(1)	62 (1)
$ \begin{array}{c} 821 \\ 821 \\ 822 \\ 823 $	O28	0.2752 (6)	-0.0426 (3)	0.3616(6)	42 (6)	028	0.7226 (6)	0.3055(3)	0.3068(7)	44 (6)
	N21	0.3181(7)	0.0187(4)	0.4261(8) 0.4512(12)	37(7)	N21 C22	0.6125 (11)	0.2009(4) 0.2462(5)	0.3623(9) 0.3860(11)	56 (10)
$ \begin{array}{c} \frac{2}{24} & 0.499\ (11) & 0.004\ (6) & 0.5552\ (11) & 90\ (11) & 0.224 & 0.929\ (11) & 0.2348\ (6) & 0.479\ (12) & 51\ (11) \\ C25 & 0.448\ (11) & -0.0633\ (6) & 0.520\ (12) & 61\ (12) & C25 & 0.6482\ (11) & 0.339\ (5) & 0.4430\ (11) & 54\ (9) \\ C26 & 0.3326\ (11) & -0.048\ (5) & 0.498\ (11) & 41\ (11) & C29 & 0.7120\ (10) & 0.339\ (5) & 0.4430\ (11) & 54\ (9) \\ C21 & 0.372\ (11) & -0.048\ (5) & 0.498\ (11) & 41\ (11) & C29 & 0.6487\ (11) & 0.399\ (5) & 0.396\ (13) & 0.339\ (15) & 0.4478\ (10) & 0.1391\ (11) & 41\ (9) \\ C21 & 0.418\ (10) & -0.048\ (5) & 0.498\ (11) & 41\ (9) & C29 & 0.6487\ (10) & 0.399\ (5) & 0.397\ (13) & 0.4478\ (10) & 41\ (10) \\ C22 & 0.5320\ (11) & -0.0310\ (1) & 0.650\ (1) & 71\ (1) & 872\ (1) & 0.537\ (1) & 0.5374\ (1) & 0.5478\ (1) & 91\ (1) \\ Rey & 0.537\ (1) & -0.0187\ (4) & 0.2477\ (8) & 44\ (8) & N31 & 0.737\ (8) & 0.2321\ (5) & 0.190\ (10) & 46\ (9) \\ C31 & 0.080\ (13) & -0.048\ (7) & 0.1329\ (14) & 84\ (15) & C33 & 0.7813\ (12) & 0.2474\ (6) & 0.0791\ (1) & 70\ (12) \\ C31 & 0.080\ (13) & -0.048\ (7) & 0.1329\ (14) & 84\ (15) & C33 & 0.7813\ (12) & 0.248\ (6) & 0.0101\ (1) & 70\ (12) \\ C31 & 0.087\ (13) & -0.068\ (6) & 0.669\ (14) & 84\ (15) & C33 & 0.7813\ (12) & 0.248\ (6) & 0.6106\ (1) & 70\ (12) \\ C44 & 0.180\ (13) & -0.0278\ (6) & 0.2248\ (1) & 0.1273\ (14) & 91\ (1) & C33 & 0.7824\ (10) & 0.2218\ (5) & 0.1626\ (1) & 84\ (16) \\ C44 & 0.180\ (13) & -0.018\ (1) & 0.2471\ (1) & C42 & 0.8896\ (13) & -2.248\ (1) & 0.4678\ (1) & 85\ (15) \\ C44 & 0.180\ (13) & -0.018\ (1) & 0.248\ (1) & 71\ (1) & C42 & 0.8896\ (13) & -2.248\ (1) & 0.4678\ (1) & 85\ (15) \\ C44 & 0.180\ (1) & 0.2471\ (1) & 0.427\ (1) & C41 & 0.8896\ (13) & -2.248\ (1) & 0.488\ (1) & 71\ (1) & C42 & 0.8896\ (13) & -2.248\ (1) & 0.488\ (1) & 71\ (1) & C42 & 0.8886\ (13) & -2.248\ (1) & 0.488\ (1) & 71\ (1) & C42 & 0.8896\ (13) & -2.248\ (1) & 0.488\ (1) & 71\ (1) & C42 & 0.8896\ (13) & -2.248\ (1) & 0.488\ (1) & 71\ (1) & C42 & 0.8896\ (13) & -2.248\ (1) & 0.488\ (1) & 71\ (1) & C42 & 0.8896\ (13) & -2.248\ (1) & 0$	C22	0.3357(11) 0.3956(14)	0.0568(5)	0.5167(12)	62 (13)	C22	0.5836 (9)	0.2402(5) 0.2549(5)	0.4445(11)	45 (10)
	C24	0.4393(11)	0.0304 (6)	0.5552(11)	59 (11)	C24	0.5929 (11)	0.2887 (5)	0.4729 (12)	55 (11)
$\begin{array}{ccccc} C26 & 0.4485 (11) & 0.0633 (6) & 0.5204 (12) & 61 (12) & C26 & 0.4905 (11) & 0.339 (5) & 0.4430 (11) & 54 (9) \\ C27 & 0.372 (11) & -0.0486 (5) & 0.4198 (11) & 41 (01) & C28 & 0.4905 (11) & 0.339 (5) & 0.439 (11) & 54 (11) \\ C28 & 0.3326 (11) & -0.0486 (5) & 0.4198 (11) & 41 (01) & C28 & 0.4597 (10) & 0.399 (5) & 0.3912 (13) & 44 (10) \\ C21 & 0.4121 (10) & -0.00310 (1) & 0.6505 (11) & 71 (1) & Br25 & 0.6185 (11) & 0.3294 (10) & 0.5478 (11) & 79 (1) \\ Br27 & 0.537 (11) & -0.1124 (1) & 0.4074 (11) & 54 (10) & C21 & 0.4323 (11) & 0.5478 (11) & 79 (1) \\ Sr27 & 0.537 (11) & -0.0187 (4) & 0.2477 (8) & 44 (8) & N31 & 0.7307 (8) & 0.2323 (5) & 0.1901 (9) & 46 (9) \\ C31 & 0.0651 (10) & -0.0038 (7) & 0.1329 (14) & 44 (15) & C33 & 0.7813 (12) & 0.2476 (10) & 0.0191 (11) & 70 (12) \\ C41 & 0.0650 (14) & -0.0488 (7) & 0.1329 (14) & 44 (15) & C33 & 0.7813 (12) & 0.2476 (10) & 0.0161 (10) & 70 (12) \\ C41 & 0.0501 (10) & -0.038 (7) & 0.1329 (14) & 84 (15) & C33 & 0.7813 (12) & 0.2476 (10) & 0.0161 (10) & 70 (12) \\ C41 & 0.1680 (13) & 0.0278 (6) & 0.2248 (11) & 0.0111 & C35 & 0.7424 (10) & 0.2168 (5) & 0.1061 (10) & 70 (12) \\ C41 & 0.1860 (13) & 0.0278 (6) & 0.497 (13) & 69 (13) & C42 & 0.8936 (13) & 0.2386 (1) & 0.4566 (1) & 44 (8) (11) \\ C41 & 0.1860 (13) & 0.0278 (6) & 0.497 (13) & 69 (13) & C42 & 0.8936 (13) & 0.2383 (0) & 0.4458 (15) & 90 (14) \\ C41 & 0.1540 (14) & -0.0378 (8) & 0.508 (16) & 84 (16) & C44 & 0.4526 (15) & 0.4101 (14) & 87 (14) \\ C41 & 0.1520 (12) & -0.0375 (8) & 0.508 (16) & 84 (16) & C44 & 0.4526 (15) & 0.4478 (15) & 95 (13) \\ C44 & 0.1520 (12) & -0.0375 (8) & 0.508 (16) & 51 (11) & C12 & 0.2586 (10) & -0.2986 (0) & 0.478 (15) & 91 (14) \\ C14 & 0.238 (10) & 0.5490 (13) & 0.1414 (11) & 47 (10) & C14 & 0.1938 (13) & 0.2383 (1) & -0.0486 (1) & 97 (14) \\ C14 & 0.238 (10) & 0.5590 (13) & 0.1424 (12) & 57 (11) & C13 & 0.1380 (13) & 0.2383 (1) & 0.738 (16) & 0.738 (16) & 0.738 (16) & 0.738 (16) & 0.738 (16) & 0.738 (16) & 0.738 (16) & 0.738 (16) & 0.738 (16) & 0.738 (16) & 0.738 (16) & 0.738 (16) & 0.738$	C25	0.4614 (9)	-0.0345 (6)	0.5564 (10)	43 (9)	C25	0.6482 (10)	0.3438 (6)	0.4718 (11)	47 (10)
$\begin{array}{c} C27 \\ C28 \\ C32 \\$	C26	0-4385 (11)	-0.0653 (6)	0.5204 (12)	61 (12)	C26	0.6905 (11)	0.3639 (5)	0.4430 (11)	54 (9)
$ \begin{array}{c} C_{23} \\ C_{21} \\ C_{22} \\ C_{2$	C27	0.3779 (11)	-0.0683 (5)	0-4539 (11)	47 (11)	C27	0.7120(10)	0.3509(5)	0.3864(11) 0.3550(13)	53 (11)
$ \begin{array}{c} 271 & 0.4218 (10) & -0.0039 (10) & 0.5324 (10) & 35 (10) & 271 & 0.4323 (10) & 0.5396 (15) & 0.4478 (10) & 40 (10) \\ 8727 & 0.3637 (1) & -0.1124 (1) & 0.4074 (1) & 63 (1) & 8727 & 0.7599 (2) & 0.3234 (1) & 0.4378 (1) & 0.9718 (1) & 20.217 (10) & 46 (10) \\ 8727 & 0.3537 (1) & -0.0124 (1) & 0.4074 (1) & 63 (1) & 8727 & 0.7599 (2) & 0.3234 (1) & 0.4372 (2) & 90 (2) \\ 231 & 0.0621 (10) & -0.0021 (5) & 0.2150 (12) & 54 (10) & C31 & 0.7456 (13) & 0.2734 (6) & 0.1600 (14) & 81 (16) \\ C32 & 0.0214 (10) & -0.0128 (8) & 0.1575 (13) & 80 (12) & C32 & 0.771 (13) & 0.2774 (6) & 0.1600 (14) & 81 (16) \\ C34 & 0.065 (13) & -0.068 (6) & 0.169 (14) & 84 (15) & C33 & 0.7813 (12) & 0.2734 (6) & 0.0995 (14) \\ C44 & 0.1680 (12) & -0.0226 (1) & -4.068 (16) & 0.69 (14) & 84 (15) & C33 & 0.7813 (12) & 0.2286 (1) & 0.1626 (12) & 46 (10) \\ C44 & 0.1680 (12) & -0.0226 (1) & -4.028 (1) & 0.4288 (1) & 0.53 & 0.753 (10) & 0.2288 (1) & 0.5366 (1) & 46 (16) \\ C44 & 0.1680 (12) & -0.0278 (6) & 0.4490 (13) & 69 (13) & C41 & 0.8388 (13) & 0.2398 (4) & 0.3666 (9) & 48 (8) \\ C44 & 0.1520 (12) & -0.0378 (8) & 0.5608 (16) & 84 (16) & C42 & 0.8956 (13) & 0.2388 (7) & 0.456 (15) & 80 (14) \\ C45 & 0.1453 (13) & -0.0246 (7) & 0.5119 (12) & 22 (16) & C42 & 0.8956 (13) & 0.2388 (7) & 0.456 (15) & 80 (14) \\ C44 & 0.1520 (12) & -0.0378 (8) & 0.5608 (16) & 84 (16) & C44 & 0.8262 (15) & 0.1331 (1) & -0.0187 (6) & 373 (13) \\ C44 & 0.1320 (10) & 0.4388 (10) & 0.3184 (7) & 42 (6) & 118 & 0.1927 (1) & 0.2388 (1) & 0.2388 (1) & 0.2388 (1) & 0.2388 (1) & 0.2388 (1) & 0.2388 (1) & 0.2388 (1) & 0.2388 (1) & 0.1371 (1) & 0.448 (12) & 71 (12) \\ C14 & 0.3286 (1) & 0.5388 (1) & 0.3422 (2) & 71 (11) & C14 & 0.2586 (1) & 0.2388 (1) & 0.2187 (1) & 0.138 (12) & 2044 (14) & 74 (14) \\ C14 & 0.3286 (10) & 0.5338 (1) & 0.2388 (1) & 0.1371 (1) & 0.147 (1) & 0.2388 (1) & 0.2388 (1) & 0.2388 (1) & 0.1371 (1) & 0.147 (1) & 0.248 (1) & 0.248 (1) & 0.248 (1) & 0.1371 (1) & 0.148 (1) & 0.147 (2) & 0.2386 (1) & 0.2188 (1) & 0.171 (1) & 0.188 (1) & 0.171 (1) & 0.188 (1) & 0.171 (1$	C28	0.3326(11)	-0.0406 (5)	0.4198(11) 0.4587(11)	41 (11) 36 (9)	C28	0.6587 (9)	0.2997(5)	0.3912 (13)	46 (10)
$\begin{array}{c} \frac{1}{12} \\ \frac{1}{2} $	C29	0.4218 (10)	-0.0039 (5)	0.5244 (10)	35 (10)	C21	0.6323(10)	0.3096 (5)	0.4478 (10)	40 (10)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Br25	0.5406(1)	-0.0310(1)	0.6505 (1)	71 (1)	Br25	0.6185(1)	0.3629 (1)	0.5478 (1)	79 (1)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Br27	0.3537(1)	-0·1124 (1)	0.4074 (1)	63 (1)	Br27	0.7599 (2)	0.3824 (1)	0.3472 (2)	90 (2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N31	0.1414 (7)	-0-0187 (4)	0.2477 (8)	44 (8)	N31	0.7307 (8)	0.2523 (5)	0.1901 (9)	46 (9)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C31	0.0821 (10)	-0.0021 (5)	0.2160(12)	54 (10)	C31	0.7456 (13)	0.2794 (6)	0.1600(14)	81 (16)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C32	0.0214(10)	-0.0152(8)	0.1379(13)	80 (12) 84 (15)	C32	0.7813(12)	0.2462(6)	0.0710(11)	70 (12)
	C34	0.0260(14) 0.0867(13)	-0.0488(7) -0.0683(6)	0.1329(14) 0.1669(14)	88 (14)	C34	0.7639 (9)	0.2168(5)	0.1016 (10)	41 (8)
	C35	0.1437(11)	-0.0518 (5)	0.2248 (11)	60 (11)	C35	0.7424 (10)	0.2218 (5)	0.1622 (12)	46 (10)
	N41	0-1850 (8)	-0.0020 (5)	0-4206 (9)	50 (8)	N41	0.7763 (9)	0.2350 (4)	0.3606 (9)	48 (8)
	C41	0.1680 (12)	0.0278 (6)	0-4497 (13)	69 (13)	C41	0.8358 (13)	0.2529(6)	0.3900 (12)	66 (11)
	C42	0.1455(13)	0.0246(7)	0.5119(12) 0.5376(14)	92 (16)	C42 C43	0.8880 (13)	0.2308(7) 0.2033(9)	0.4678 (15)	95 (15)
$ \begin{array}{cccc} \hline C_{45} & 0.1770 (11) & -0.0317 (2) & 0.4480 (15) & 71 (14) & C_{45} & 0.7689 (12) & 0.2032 (6) & 0.3833 (12) & 71 (12) \\ \hline Molecule B & Molecule D & Molecule D & Molecule J &$	C43	0.1520(12)	-0.0375(8)	0.5080(14)	84 (16)	C43	0.8262(15)	0.1854 (6)	0.4410 (14)	87 (14)
	C45	0.1770 (11)	-0.0317 (7)	0.4480 (15)	71 (14)	C45	0.7689 (12)	0.2032 (6)	0-3833 (12)	71 (12)
Note (a) Ni 0.1473 (2) 0.2540 (1) -0.465 (2) 44 (2) 018 0.2086 (6) 0.5490 (3) 0.3184 (7) 42 (6) 018 0.1473 (2) 0.2540 (1) -0.0485 (6) 0.731 (5) 0111 0.2734 (7) 0.5083 (4) 0.2530 (8) 37 (7) N11 0.2307 (9) 0.2414 (4) 0.04930 (6) 0.0472 (11) 58 (10) 012 0.32294 (10) 0.44986 (5) 0.2178 (13) 55 (11) C12 0.2208 (6) 0.0727 (11) 58 (10) 0.2306 (6) 0.1714 (11) 58 (11) C14 0.2265 (10) 0.5905 (5) 0.1625 (10) 51 (11) C15 0.3757 (10) 0.2306 (6) 0.1714 (11) 58 (11) C16 0.2584 (10) 0.5957 (5) 0.2554 (11) 52 (11) C17 0.2394 (10) 0.3228 (5) 0.0705 (12) 51 (10) C17 0.2294 (10) 0.5526 (6) 0.2712 (11) 48 (10) C18 0.2381 (5) 0.0778 (12) 47 (11) 47 (11) C18 0.2384 (10) 0.5526 (6) <td< td=""><td>Malaaula</td><td>D</td><td></td><td></td><td></td><td>Molecule</td><td>מ</td><td></td><td></td><td></td></td<>	Malaaula	D				Molecule	מ			
$ \begin{array}{c} n_{18} & 0.2036 (6) & 0.2430 (1) & 0.3142 (1) & 42 (6) & 0.18 & 0.1928 (6) & 0.3013 (3) & -0.0189 (6) & 37 (5) \\ n_{11} & 0.2743 (7) & 0.5038 (4) & 0.2530 (8) & 37 (7) & n_{11} & 0.2137 (9) & 0.2414 (4) & 0.0430 (9) & 51 (9) \\ n_{12} & 0.2022 (10) & 0.4858 (5) & 0.2178 (13) & 55 (11) & C12 & 0.2568 (10) & 0.2084 (5) & 0.137 (14) & 66 (12) \\ C13 & 0.2224 (10) & 0.4989 (6) & 0.1614 (12) & 57 (11) & C13 & 0.3180 (12) & 0.2044 (5) & 0.137 (14) & 66 (12) \\ C14 & 0.2316 (10) & 0.5333 (5) & 0.1411 (11) & 47 (10) & C14 & 0.3615 (10) & 0.2306 (6) & 0.1714 (11) & 58 (11) \\ C15 & 0.2863 (10) & 0.5905 (5) & 0.1623 (10) & 51 (11) & C15 & 0.3757 (10) & 0.2944 (6) & 0.1716 (12) & 60 (11) \\ C16 & 0.2528 (11) & 0.5616 (6) & 0.2524 (11) & 52 (11) & C16 & 0.3565 (11) & 0.3229 (15) & 0.01356 (13) & 58 (12) \\ C17 & 0.2229 (10) & 0.5975 (6) & 0.2554 (11) & 52 (11) & C17 & 0.2940 (10) & 0.3283 (5) & 0.0705 (12) & 51 (10) \\ C18 & 0.23248 (10) & 0.5626 (6) & 0.2712 (11) & 48 (10) & C18 & 0.2501 (10) & 0.2994 (6) & 0.0718 (12) & 47 (11) \\ C19 & 0.2571 (10) & 0.5412 (6) & 0.2364 (10) & 44 (10) & C19 & 0.2819 (12) & 0.2678 (6) & 0.0718 (12) & 47 (11) \\ D15 & 0.3144 (2) & 0.6111 (1) & 0.0863 (1) & 83 (2) & Br15 & 0.4606 (1) & 0.2914 (1) & 0.2244 (1) & 86 (1) \\ Br17 & 0.1896 (1) & 0.4523 (1) & 0.3041 (2) & 82 (2) & Br17 & 0.2663 (1) & 0.3714 (1) & 0.0244 (1) & 70 (1) \\ 028 & 0.2812 (6) & 0.4506 (3) & 0.3671 (6) & 43 (6) & 0.28 & 0.1170 (6) & 0.2043 (3) & -0.0717 (7) & 45 (6) \\ C22 & 0.3256 (10) & 0.5406 (3) & 0.3671 (6) & 43 (6) & 0.28 & 0.1170 (6) & 0.2043 (3) & -0.0717 (7) & 45 (6) \\ C23 & 0.4329 (7) & 0.5438 (5) & 0.5549 (12) & 63 (11) & C24 & 0.2396 (11) & 0.2241 (1) & 0.2641 (1) & 70 (1) \\ C24 & 0.4516 (11) & 0.5464 (2) & 0.5541 (12) & C23 & 0.2413 (11) & 0.2674 (7) & -0.6137 (12) & 71 (12) \\ C24 & 0.4516 (1) & 0.5438 (5) & 0.5540 (12) & 63 (11) & C24 & 0.1379 (11) & 0.2641 (1) & 70 (12) \\ C24 & 0.4526 (10) & 0.4531 (8) & 77 (7) & N21 & 0.188 (7) & 0.2404 (4) & -0.7134 (8) & 77 (12) \\ C25 & 0.4465 (9) & 0.4538 (5) & 0.5401 (12)$	NG	D 0.2385 (2)	0.4085 (1)	0.3422 (2)	42 (1)	Ni	0.1473 (2)	0.2540(1)	-0.0465 (2)	44 (2)
$ \begin{array}{c} Ni1 & 0 & 2134 & 07 & 0 & 0 & 0 & 2330 & \mathbf{(9)} & 0 & 2241 & \mathbf{(4)} & 0 & 0430 & \mathbf{(9)} & 51 & \mathbf{(9)} \\ C12 & 0 & 0 & 0 & 0 & 488 & \mathbf{(6)} & 0 & 0 & 178 & \mathbf{(13)} & 55 & \mathbf{(11)} & C12 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ C13 & 0 & $	018	0.2086 (6)	0.4985(1) 0.5490(3)	0.3422(2) 0.3184(7)	42 (6)	018	0.1928 (6)	0.3013(3)	-0.0189 (6)	37 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NII	0.2743 (7)	0.5083 (4)	0.2530 (8)	37 (7)	NII	0.2370 (9)	0.2414 (4)	0-0430 (9)	51 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12	0.3022 (10)	0-4858 (5)	0.2178 (13)	55 (11)	C12	0.2568 (10)	0.2098 (6)	0.0727 (11)	58 (10)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C13	0.3294 (10)	0-4996 (6)	0.1614 (12)	57 (11)	C13	0.3180(12)	0.2044(5)	0.1337(14)	66 (12) 58 (11)
$ \begin{array}{c} C_{15} & 0.2863 (10) & 0.5905 (3) & 0.102 (10) & 51 (11) & C_{15} & 0.513 (10) & 0.253 (5) & 0.112 & C_{17} \\ 0.2284 (10) & 0.5975 (6) & 0.2254 (11) & 52 (11) & C_{17} & 0.2940 (10) & 0.3283 (5) & 0.0705 (12) & 51 (10) \\ C_{17} & 0.2292 (10) & 0.5975 (6) & 0.2254 (11) & 52 (11) & C_{17} & 0.2940 (10) & 0.3283 (5) & 0.0705 (12) & 51 (10) \\ C_{19} & 0.2541 (10) & 0.5542 (6) & 0.2712 (11) & 48 (10) & C_{19} & 0.2530 (10) & 0.2994 (6) & 0.0402 (11) & 44 (10) \\ C_{19} & 0.2511 (10) & 0.5545 (5) & 0.1813 (12) & 50 (10) & C_{11} & 0.3422 (10) & 0.2652 (6) & 0.718 (12) & 47 (11) \\ C_{11} & 0.2919 (10) & 0.5554 (5) & 0.1813 (12) & 50 (10) & C_{11} & 0.3422 (10) & 0.2652 (6) & 0.1410 (12) & 40 (10) \\ B_{17} & 0.1896 (1) & 0.6273 (1) & 0.3044 (2) & 82 (2) & B_{17} & 0.2663 (1) & 0.3714 (1) & 0.0244 (1) & 70 (1) \\ 0.28 & 0.2812 (6) & 0.4506 (3) & 0.3671 (6) & 43 (6) & 0.28 & 0.1170 (6) & 0.2043 (3) & -0.0717 (7) & 45 (6) \\ N21 & 0.3296 (7) & 0.5112 (4) & 0.4331 (8) & 37 (7) & N21 & 0.1863 (7) & 0.2440 (4) & -0.1334 (8) & 45 (8) \\ C_{22} & 0.3526 (10) & 0.5405 (5) & 0.5298 (13) & 64 (12) & C_{23} & 0.2443 (11) & 0.525 (6) & -0.2170 (13) & 67 (12) \\ C_{24} & 0.4516 (11) & 0.5161 (6) & 0.5640 (12) & 63 (11) & C_{24} & 0.2396 (11) & 0.2261 (1) & 7.02439 (12) & 79 (12) \\ C_{25} & 0.4633 (9) & 0.4538 (5) & 0.5500 (11) & 43 (10) & C_{25} & 0.1931 (11) & 0.1613 (6) & -0.2266 (11) & 7.012 \\ C_{26} & 0.4612 (10) & 0.4234 (5) & 0.5241 (12) & 42 (9) & C_{26} & 0.1602 (13) & 0.1411 (5) & -0.1966 (14) & 70 (12) \\ C_{27} & 0.3806 (10) & 0.4232 (5) & 0.5241 (12) & 42 (9) & C_{26} & 0.1602 (13) & 0.1411 (5) & -0.1966 (14) & 70 (12) \\ C_{27} & 0.3806 (10) & 0.4232 (5) & 0.5251 (11) & 36 (10) & C_{27} & 0.1379 (11) & 0.1536 (13) & -0.1986 (10) \\ C_{29} & 0.3666 (10) & 0.4232 (1) & 0.4551 (11) & 36 (10) & C_{27} & 0.1371 (10) & 0.1364 (12) & 52 (10) \\ C_{29} & 0.3666 (10) & 0.4329 (1) & 0.4551 (11) & 8(1) & B_{72} & 0.0327 (6) & -0.0198 (14) & 70 (12) \\ C_{24} & 0.3070 (11) & 0.4542 (10) & 0.1577 (14) & 99 (17) \\ C_{34} & 0.0907 (11) $	C14	0.3216(10)	0.5333(5)	0.1411(11)	4/(10)	C14 C15	0.3757(10)	0.2306 (6)	0.1716(11)	60 (11)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C15	0.2803(10) 0.2548(11)	0.5905(5) 0.6116(5)	0.2026 (12)	57 (11)	C15	0.3568(11)	0.3259(5)	0.1356 (12)	58 (12)
$ \begin{array}{ccccc} \hline C18 & 0.2348 (10) & 0.5626 (6) & 0.2712 (11) & 48 (10) & C18 & 0.2350 (10) & 0.2999 (6) & 0.0402 (11) & 44 (10) \\ C19 & 0.2611 (10) & 0.5542 (6) & 0.2364 (10) & 44 (10) & C19 & 0.2819 (12) & 0.2658 (6) & 0.0778 (12) & 47 (11) \\ C11 & 0.2919 (10) & 0.5554 (5) & 0.1813 (12) & 50 (10) & C11 & 0.3422 (10) & 0.2652 (6) & 0.1410 (12) & 40 (10) \\ Br15 & 0.3144 (2) & 0.6111 (1) & 0.0863 (1) & 83 (2) & Br15 & 0.4606 (1) & 0.2914 (1) & 0.2644 (1) & 86 (1) \\ Br17 & 0.1896 (1) & 0.6273 (1) & 0.3044 (2) & 82 (2) & Br17 & 0.2663 (1) & 0.3714 (1) & 0.0244 (1) & 70 (1) \\ 028 & 0.2812 (6) & 0.4506 (3) & 0.3671 (6) & 43 (6) & 0.228 & 0.1170 (6) & 0.2043 (3) & -0.0717 (7) & 45 (6) \\ N21 & 0.2326 (7) & 0.5112 (4) & 0.4331 (8) & 37 (7) & N21 & 0.1863 (7) & 0.2440 (4) & -0.1334 (8) & 45 (8) \\ C22 & 0.3526 (10) & 0.5405 (4) & 0.4660 (13) & 51 (10) & C22 & 0.2191 (10) & 0.2674 (7) & -0.1607 (12) & 71 (12) \\ C23 & 0.4139 (13) & 0.5454 (5) & 0.5298 (13) & 64 (12) & C23 & 0.2443 (11) & 0.2525 (6) & -0.2170 (13) & 67 (12) \\ C24 & 0.4516 (11) & 0.5161 (6) & 0.5600 (11) & 43 (10) & C25 & 0.1931 (11) & 0.1613 (6) & -0.2245 (11) & 52 (11) \\ C26 & 0.44612 (10) & 0.4233 (6) & 0.5270 (1) & 328 (8) & C28 & 0.1424 (10) & 0.1613 (6) & -0.2245 (11) & 52 (11) \\ C27 & 0.3806 (10) & 0.4230 (4) & 0.4571 (11) & 36 (10) & C27 & 0.1379 (11) & 0.1579 (6) & -0.1364 (12) & 56 (11) \\ C28 & 0.3411 (9) & 0.4459 (5) & 0.4262 (10) & 33 (8) & C28 & 0.1424 (10) & 0.1904 (5) & -0.1986 (14) & 70 (12) \\ C21 & 0.4311 (10) & 0.4458 (5) & 0.5305 (11) & 38 (9) & C21 & 0.2090 (11) & 0.1975 (6) & -0.1588 (14) & 6012 \\ C21 & 0.4311 (10) & 0.4458 (5) & 0.5305 (11) & 38 (9) & C21 & 0.2090 (11) & 0.1975 (6) & -0.1588 (14) & 6012 \\ C21 & 0.331 (14) & 0.4545 (1) & 0.6551 (1) & 78 (1) & Br27 & 0.0935 (2) & 0.1263 (1) & -0.0867 (1) & 0.3025 (1) & 85 (1) \\ Br27 & 0.5302 (1) & 0.3792 (1) & 0.4092 (1) & 59 (1) & Br27 & 0.0935 (2) & 0.1263 (1) & -0.0877 (2) & 86 (2) \\ N31 & 0.1450 (8) & 0.4783 (4) & 0.2731 (43) 70 (11) & C31 & 0.0900 (11) & 0.1975 (6) & -0.1538 (14) & 917 $	C17	0.2292(10)	0.5975(6)	0.2554(11)	52 (11)	C17	0.2940 (10)	0.3283 (5)	0.0705 (12)	51 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C18	0.2348 (10)	0.5626 (6)	0.2712 (11)	48 (10)	C18	0.2530 (10)	0-2999 (6)	0.0402 (11)	44 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C19	0.2671 (10)	0.5412 (6)	0.2364 (10)	44 (10)	C19	0.2819 (12)	0.2678 (6)	0.0778 (12)	47 (11)
	CII	0.2919 (10)	0.5554(5)	0.1813 (12)	50 (10)	CII P=16	0.3422(10)	0.2052(0)	0.1410(12)	40 (10)
	Bris Bris	0.3144(2)	0.6111(1) 0.6273(1)	0.0863(1) 0.3044(2)	83 (2)	Br17	0.2663 (1)	0.2714(1) 0.3714(1)	0.2041(1) 0.0244(1)	70(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	028	0.2812(6)	0.4506(3)	0.3671(6)	43 (6)	028	0.1170(6)	0.2043 (3)	-0.0717 (7)	45 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N21	0.3296 (7)	0.5112 (4)	0.4331 (8)	37 (7)	N21	0.1863 (7)	0.2440 (4)	-0.1334 (8)	45 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C22	0-3526 (10)	0-5405 (4)	0-4660 (13)	51 (10)	C22	0.2191 (10)	0.2674 (7)	-0.1607 (12)	71 (12)
$\begin{array}{cccccc} C24 & 0.4316 (11) & 0.5161 (6) & 0.5640 (12) & 63 (11) & C24 & 0.2396 (11) & 0.2216 (17) & -0.2439 (12) & 712 \\ C25 & 0.4663 (9) & 0.4538 (5) & 0.5500 (11) & 31 (10) & C25 & 0.1931 (11) & 0.1613 (6) & -0.2265 (11) & 52 (11) \\ C26 & 0.4412 (10) & 0.4230 (4) & 0.4571 (11) & 36 (10) & C27 & 0.1379 (11) & 0.1559 (6) & -0.1364 (12) & 56 (11) \\ C28 & 0.3411 (9) & 0.4230 (4) & 0.4571 (11) & 36 (10) & C27 & 0.1379 (11) & 0.1590 (6) & -0.1364 (12) & 56 (11) \\ C29 & 0.3666 (10) & 0.4230 (4) & 0.4571 (11) & 36 (10) & C29 & 0.1818 (10) & 0.2096 (6) & -0.1598 (14) & 60 (12) \\ C21 & 0.4311 (10) & 0.4855 (5) & 0.5305 (11) & 38 (9) & C21 & 0.2090 (11) & 0.1975 (6) & -0.2124 (10) & 61 (11) \\ Br25 & 0.5468 (1) & 0.4545 (1) & 0.6551 (1) & 78 (1) & Br27 & 0.0935 (2) & 0.1410 (1) & -0.3025 (1) & 85 (1) \\ Br27 & 0.3502 (11) & 0.3792 (1) & 0.4092 (1) & 59 (1) & Br27 & 0.0935 (2) & 0.1263 (11) & -0.0877 (2) & 86 (2) \\ N31 & 0.1450 (8) & 0.4783 (4) & 0.2538 (9) & 46 (8) & N31 & 0.1045 (8) & 0.2570 (5) & 0.0386 (9) & 55 (9) \\ C31 & 0.0907 (11) & 0.4994 (6) & 0.2311 (13) & 70 (11) & C31 & 0.0900 (12) & 0.2967 (6) & 0.0674 (13) & 681 (12) \\ C33 & 0.0313 (14) & 0.4500 (8) & 0.1410 (14) & 96 (16) & C33 & 0.0523 (13) & 0.2605 (10) & 0.1577 (14) & 99 (17) \\ C34 & 0.0902 (13) & 0.4326 (6) & 0.1694 (14) & 77 (13) & C34 & 0.0647 (13) & 0.2275 (8) & 0.1317 (14) & 99 (17) \\ C34 & 0.0902 (13) & 0.4326 (6) & 0.1694 (14) & 77 (13) & C34 & 0.0688 (10) & 0.2280 (6) & 0.0718 (13) & 63 (11) \\ N41 & 0.1942 (7) & 0.4933 (4) & 0.4277 (8) & 40 (7) & N41 & 0.0581 (8) & 0.2750 (5) & -0.1327 (10) & 52 (8) \\ C41 & 0.1794 (10) & 0.4653 (6) & 0.5388 (12) & 79 (14) & C43 & -0.0610 (12) & 0.3975 (6) & -0.1327 (10) & 52 (8) \\ C41 & 0.1794 (10) & 0.4653 (6) & 0.5388 (12) & 79 (14) & C43 & -0.0610 (12) & 0.3975 (6) & -0.1327 (10) & 52 (8) \\ C41 & 0.1794 (10) & 0.4653 (6) & 0.5388 (12) & 79 (14) & C43 & -0.0610 (12) & 0.3975 (6) & -0.1327 (10) & 52 (8) \\ C43 & 0.1403 (12) & 0.4913 (9) & 0.5388 (12) & 79 (14) & C43 & -0.0610 (12) & 0.2998 (7) & -0.2573 (14) &$	C23	0-4139 (13)	0-5454 (5)	0.5298 (13)	64 (12)	C23	0.2443(11)	0.2525(6)	-0.2170(13) 0.2420(12)	57 (12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C24	0.4516(11)	0.5161(6)	0.5640(12)	03 (11) 43 (10)	C24	0.2390(11) 0.1931(11)	0.1613(6)	-0.2439(12) -0.2265(11)	52 (11)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C25	0.4003(9) 0.4412(10)	0.4338(3) 0.4243(5)	0.5241(12)	42 (9)	C26	0.1602(13)	0.1411(5)	-0.1906(14)	70 (12)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C27	0.3806 (10)	0.4230 (4)	0.4571 (11)	36 (10)	C27	0.1379 (11)	0.1559 (6)	-0.1364 (12)	56 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C28	0-3411 (9)	0.4509 (5)	0.4262 (10)	33 (8)	C28	0.1424 (10)	0.1904 (5)	-0.1194 (12)	52 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C29	0.3666 (10)	0.4829 (5)	0-4638 (11)	40 (9)	C29	0.1818(10)	0.2096(6)	-0.1598(14)	60 (12)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C21	0.4311(10)	0.4855(5)	0.5305(11)	38 (9)	CZI Br25	0.2090(11) 0.2218(2)	0.1975(0)	-0.2124(10) -0.3025(1)	85 (1)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Br27	0.3408(1) 0.3502(1)	0.3792(1)	0.4092(1)	59(1)	Br25 Br27	0.0935(2)	0.1263(1)	-0.0877(2)	86 (2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N31	0.1450 (8)	0.4783 (4)	0.2538 (9)	46 (8)	N31	0.1045 (8)	0.2570 (5)	0.0386 (9)	55 (9)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C31	0.0907 (11)	0-4994 (6)	0.2311 (13)	70 (11)	C31	0.0900(12)	0.2867 (6)	0.0674 (13)	68 (12)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C32	0.0337 (13)	0.4842 (8)	0.1757 (15)	89 (17)	C32	0.0632 (12)	0.2914 (7)	0.1235 (14)	79 (14)
	C33	0.0313 (14)	0.4500 (8)	0.1410(14)	96 (16)	C33	0.0523(13) 0.0647(13)	0.2003(10)	0.1317(14)	99 (17) 98 (15)
	C 34	0.1489 (13)	0.4320 (0)	0.1094 (14)	64 (11)	C 35	0.0898 (10)	0.2280 (6)	0.0718 (13)	63 (11)
C41 0-1794 (10) 0-4655 (6) 0-4496 (11) 49 (10) C41 0-0576 (12) 0-3075 (6) -0-1603 (13) 70 (12) C42 0-1526 (12) 0-4630 (6) 0-5066 (14) 62 (13) C42 -0-0016 (14) 0-3205 (6) -0-2221 (14) 88 (15) C43 0-1403 (12) 0-4913 (9) 0-5388 (12) 79 (14) C43 -0-0610 (12) 0-2998 (7) -0-2273 (14) 80 (12) C44 0-1574 (14) 0-5237 (7) 0-5149 (18) 95 (16) C44 -0-0593 (14) 0-2671 (7) -0-2273 (15) 86 (16) C45 0-1849 (11) 0-5262 (6) 0-4584 (14) 67 (12) C45 0-0017 (15) 0-2653 (6) -0-1633 (13) 69 (13)	N41	0.1942 (7)	0.4953 (4)	0.4277 (8)	40 (7)	N41	0.0581 (8)	0.2750 (5)	-0.1327 (10)	52 (8)
C42 0 · 1526 (12) 0 · 4630 (6) 0 · 5066 (14) 62 (13) C42 -0 · 0016 (14) 0 · 3205 (6) -0 · 2221 (14) 88 (15) C43 0 · 1403 (12) 0 · 4913 (9) 0 · 5388 (12) 79 (14) C43 -0 · 0610 (12) 0 · 2998 (7) -0 · 2273 (14) 80 (12) C44 0 · 1574 (14) 0 · 5237 (7) 0 · 5149 (18) 95 (16) C44 -0 · 0593 (14) 0 · 2671 (7) -0 · 2273 (15) 86 (16) C45 0 · 1804 (11) 0 · 5262 (6) 0 · 4584 (14) 67 (12) C45 0 · 0017 (15) 0 · 2553 (6) -0 · 1633 (13) 69 (13)	C41	0.1794 (10)	0.4655 (6)	0-4496 (11)	49 (10)	C41	0.0576 (12)	0-3075 (6)	-0.1603 (13)	70 (12)
C43 0-1403 (12) 0-4913 (9) 0-5388 (12) 79 (14) C43 -0-0610 (12) 0-2998 (7) -0-2573 (14) 80 (12) C44 0-1574 (14) 0-5237 (7) 0-5149 (18) 95 (16) C44 -0-0593 (14) 0-2671 (7) -0-2273 (15) 86 (16) C45 0-1849 (11) 0-5262 (6) 0-4584 (14) 67 (12) C45 0-0017 (15) 0-2563 (6) -0-1633 (13) 69 (13)	C42	0.1526 (12)	0-4630 (6)	0.5066 (14)	62 (13)	C42	-0.0016 (14)	0.3205 (6)	-0.2221 (14)	88 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C43	0.1403 (12)	0-4913 (9)	0.5388 (12)	79 (14)	C43	-0.0502 (12)	0.2998 (7)	-0.2573 (14)	80 (12) 86 (16)
	C44 C45	0.15/4(14)	0.5237(7) 0.5262(6)	0.4584 (14)	67 (12)	C44 C45	0.0017 (15)	0-2563 (6)	-0.1633 (13)	69 (13)

Table 1 (cont.)

	x	y	z	$U_{\rm iso}$ (Å ² × 10 ³)
Uncoord	linated pyridine n	nolecules		
СШ	0.8938 (10)	0.1246 (3)	0.6107 (7)	80 (7)
C112	0.9538 (10)	0.1417(3)	0.6569 (7)	106 (9)
C113	0.9583(10)	0.1589 (3)	0.7257(7)	110 (9)
C114	0.9027 (10)	0.1591(3)	0.7482 (7)	105 (9)
C115	0.8426 (10)	0.1420(3)	0.7020 (7)	88 (8)
C116	0.8382 (10)	0.1247 (3)	0.6332 (7)	98 (8)
C211	0.4453 (8)	0.1330 (4)	0.3181 (8)	78 (7)
C212	0-4641 (8)	0.1676 (4)	0.3279 (8)	99 (8)
C213	0.4287 (8)	0-1906 (4)	0-3564 (8)	84 (8)
C214	0.3746 (8)	0.1791 (4)	0.3751 (8)	77 (7)
C215	0-3559 (8)	0.1445 (4)	0.3652 (8)	114 (9)
C216	0.3912(8)	0.1215 (4)	0.3367 (8)	118 (10)
C311	-0.0491(8)	0.1049 (4)	0.4426 (12)	106 (9)
C312	0.0103(8)	0.1211(4)	0.4936 (12)	89 (8)
C313	0.0686 (8)	0.1210(4)	0.4761 (12)	104 (9)
C314	0.0674 (8)	0.1046(4)	0.4076(12)	101 (9)
C315	0.0080 (8)	0.0884 (4)	0.3566 (12)	122 (10)
C316	-0.0503 (8)	0.0885 (4)	0.3741 (12)	120 (10)
C411	0.5332 (8)	0-4360 (4)	0.2362 (7)	74 (7)
C412	0.4762 (8)	0.4436 (4)	0.2533 (7)	83 (8)
C413	0.4482 (8)	0-4186 (4)	0.2862 (7)	104 (9)
C414	0.4771 (8)	0-3858 (4)	0.3020 (7)	102 (9)
C415	0.5341 (8)	0-3781 (4)	0.2850 (7)	96 (8)
C416	0-5621 (8)	0.4032 (4)	0.2521 (7)	99 (8)
C511†	0.9664 (22)	0.1296 (7)	0.0334 (17)	130
C512†	1.0272 (22)	0.1110 (7)	0.0647 (17)	130
C513†	1.0346 (22)	0.0849 (7)	0.1199 (17)	130
C514†	0.9813 (22)	0.0774 (7)	0.1437 (17)	130
C515†	0.9205 (22)	0.0960 (7)	0.1124 (17)	130
C516†	0.9130 (22)	0.1221 (7)	0.0572 (17)	130
C611‡	0.8918 (25)	0.1597 (12)	0.0074 (28)	130
C612‡	0.9521 (25)	0.1626 (12)	-0.0053 (28)	130
C613‡	1.0058 (25)	0.1398 (12)	0.0318 (28)	130
C614‡	0.9991 (25)	0.1141 (12)	0.0816 (28)	130
C615‡	0.9387 (25)	0.1112 (12)	0.0943 (28)	130
C616‡	0.8851 (25)	0-1340 (12)	0.0572 (28)	130

† Occupation factor 0.60(1). ‡ Occupation factor 0.40(1).

1.0 Å from the atoms to which they are bonded. To these H atoms fixed isotropic temperature factors were assigned, equal to the isotropic equivalents of the parent C.

The final conventional agreement factors were R = 0.060 and wR = 0.058 for 5983 'observed' reflections and 1467 variables. The function minimized was $\sum w(F_{o} - F_{c})^{2}$ with $w = 1/[\sigma^{2}(F_{o}) + 0.00040 F_{o}^{2}]$ with $\sigma(F_{o})$ from counting statistics. The maximum shiftto e.s.d. ratio in the last full-matrix least-squares cycle was less than 0.1. The final difference Fourier map showed a residual electron density between -0.27 and $0.32 \text{ e} \text{ Å}^{-3}$. Fig. 1, which shows one of the four Ni complexes, was drawn with the PLUTO program (Motherwell, 1976). Geometrical parameters and the remaining 35 H atoms, which cannot be included in the refinement because of a lack of storage capacity in the local version of the SHELX program, were calculated with PARST (Nardelli, 1983). Final positional and thermal parameters are given in Table 1.*

A selection of the molecular geometry data is collected in Table 2, in which the four independent molecules are named A, B, C and D. The geometry and the crystallographic numbering scheme of one of the complexes is given in Fig. 1. Values for selected torsion angles and angles between least-squares planes and lines have been deposited. No unusual geometric features are present in the molecule.

Related literature. This is the third crystal structure determination in a series of Ni coordination compounds which have 8-quinolinol derivatives as ligands. Previously we reported the crystal structures of Ni¹¹ complexes with 5-chloro- (García-Granda & Gómez-Beltrán, 1986) and 5,7-dichloro-8-quinolinol Garcia-Granda *et al.*, 1987) as ligands. The complex shows a similar geometry to that found in the 5,7-dichloro complex and the coordination distances for nickel also

Fig. 1. View of one nickel complex (denoted as A) showing the nickel coordination and the atomic numbering. The other three complexes have identical numbering schemes.

 Table 2. Selected bond lengths (Å) and angles (°) (with
 e.s.d.'s)

	A	В	С	D
vi-018	2.051 (12)	2.058 (12)	2.030(11)	2.051 (11)
Ni-028	2.016 (12)	2.048 (11)	2.048 (12)	2.034 (12)
Ni-N11	2.064 (19)	2.087 (18)	2.071 (14)	2.029 (14)
Ni-N21	2.072 (12)	2.060 (12)	2.092 (19)	2.094 (18)
NiN31	2.097 (14)	2.161 (14)	2.114 (20)	2.087 (19)
Ni-N41	2.107 (20)	2.118 (18)	2.103 (15)	2.101 (15)
018-Ni-N11	81.5 (6)	80.6 (6)	80.6 (6)	79.2 (6)
018-Ni-N31	94.3 (6)	94.1 (6)	92.6 (6)	93.8 (8)
018-Ni-N41	94.5 (6)	91.3 (6)	93.9 (6)	92.0 (6)
028–Ni–O18	170.5 (6)	172.0 (6)	171.7 (6)	171.0 (6)
028-Ni-N11	91.0 (6)	94.2 (6)	93.8 (6)	93.9 (6)
028–Ni–N21	81.1 (5)	80.9 (5)	79.7 (6)	80.6 (6)
028–Ni–N31	91.4 (6)	91.9 (6)	93.3 (6)	91.8 (6)
028-Ni-N41	93.0 (6)	94.0 (6)	92.0 (6)	95-0 (6)
NII-Ni-N31	89.7 (6)	89.5 (6)	87.5 (6)	87.7 (6)
N11-Ni-N41	176.0 (7)	171.8 (6)	173-4 (6)	170-9 (7)
V21-Ni-O18	93-3 (5)	93.3 (6)	94-3 (6)	93-7 (6)
V21-Ni-N11	91-8 (7)	94.0 (6)	92-4 (6)	92-3 (7)
N21-Ni-N31	172-4 (6)	172-2 (6)	173-0 (7)	172-4 (8)
121–Ni–N41	88-1 (6)	88-2 (6)	91.6 (6)	90-7 (6)
N31-Ni-N41	90.8 (7)	89.2 (6)	89.0 (7)	90-5 (7)

^{*} Lists of structure factors, anisotropic thermal parameters, H-atom parameters, selected torsion angles and the main leastsquares planes have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 44343 (141 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

compare favourably in the two compounds. The Ni–N distance for the pyridine ligands varies from $2 \cdot 09$ (2) to $2 \cdot 16$ (2) Å against $2 \cdot 094$ (8) and $2 \cdot 145$ (7) Å, average distances for the 5,7-dichloro complex and for the *trans*-5-chloro compound (García-Granda & Gómez-Beltrán, 1986), respectively. The Ni–N distances for the 5,7-dibromo-8-quinolinol ligand are in the range $2 \cdot 03$ (2)– $2 \cdot 09$ (2) Å, Ni–O are between $2 \cdot 01$ (1) and $2 \cdot 06$ (1) Å, and the average N–Ni–O quinolinol bite angle is $80 \cdot 5$ (6)°. Recently a crystallographic study on a couple of 8-quinolinol derivatives (Banerjee & Saha, 1986) has been reported.

SG-G gratefully acknowledges the Spanish Ministerio de Educacion y Ciencia (MEC-FPI) for a postdoctoral grant and the University of Oviedo for leave of absence.

References

BANERJEE, T. & SAHA, N. N. (1986). Acta Cryst. C42, 1408-1411.

- BEURSKENS, P. T., BOSMAN, W. P., DOESBURG, H. M., VAN DEN HARK, TH.E.M., PRICK, P. A. J., NOORDIK, J. H., BEURSKENS, G., GOULD, R. O. & PARTHASARATHI, V. (1983). Conformation in Biology, edited by R. SRINIVASAN & R. H. SARMA, pp. 389-406. New York: Adenine Press.
- BEURSKENS, P. T., GOULD, R. O., BRUINS SLOT, H. J. & BOSMAN, W. P. (1987). Z. Kristallogr. Submitted.
- García-Granda, S., Beurskens, P. T., Behm, H. J. J. & Gómez-Beltrán, F. (1987). *Acta Cryst.* C43, 39–41.
- GARCÍA-GRANDA, S. & GÓMEZ-BELTRÁN, F. (1986). Acta Cryst. C42, 33-35.
- GRANT, D. F. & GABE, E. J. (1978). J. Appl. Cryst. 11, 114-120.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
- LEHMANN, M. S. & LARSEN, F. K. (1974). Acta Cryst. A30, 580-584.
- MOTHERWELL, W. D. S. (1976). PLUTO. Program for plotting molecular and crystal structures. Univ. of Cambridge, England. NARDELLI, M. (1983). Comput. Chem. 7, 95-98.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination, Univ. of Cambridge, England.
- WALKER, N. & STUART, D. (1983). Acta Cryst. A 39, 158-166.

.

Acta Crvst. (1988). C44, 179–181

Orthorhombic Modification of Dichlorobis(triphenylphosphine)mercury(II)

BY TARLOK S. LOBANA AND MANINDERJIT K. SANDHU

Department of Chemistry, Guru Nanak Dev University, Amritsar-143005, India

AND MICHAEL R. SNOW AND EDWARD R. T. TIEKINK

Jordan Laboratories, Department of Physical and Inorganic Chemistry, University of Adelaide, South Australia 5001, Australia

(Received 11 August 1987; accepted 7 September 1987)

Abstract. $[HgCl_2(C_{18}H_{15}P)_2]$, $M_r = 796.0$, orthorhombic, $Pna2_1$, a = 17.782 (8), b = 9.9678 (9), c = 18.283 (7) Å, U = 3241 (4) Å³, Z = 4, D_m (flotation) = 1.64 (1), $D_x = 1.631$ Mg m⁻³, Mo Kā radiation, $\lambda = 0.7107$ Å, $\mu = 4.993$ mm⁻¹, F(000) = 1560, T = 295 (2) K, R = 0.058 for 2541 observed reflections. The Hg atom in the orthorhombic polymorph of $[HgCl_2\{P(C_6H_5)_3\}_2]$ exists in a distorted tetrahedral arrangement of two Cl atoms [Hg-Cl(1) 2.504 (4), Hg-Cl(2) 2.491 (7) Å and Cl(1)-Hg-Cl(2) 106.6 (2)°], which define an approximate mirror plane, and two P atoms [Hg-P(1) 2.503 (6), Hg-P(2) 2.532 (4) Å and P(1)-Hg-P(2) 113.5 (1)°].

Experimental. Well formed crystals were obtained from the symmetrization (Coates & Lauder, 1965) reaction of $(C_6H_5)HgCl.P(C_6H_5)_3$ in acetonitrile solution held at 278–283 K. Enraf–Nonius CAD-4F diffractometer controlled by a PDP8/A computer, graphite-mono-

0108-2701/88/010179-03\$03.00

chromated Mo $K\bar{\alpha}$ radiation; $\omega:2\theta$ scan technique. Cell parameters on crystal $0.60 \times 0.38 \times 0.38$ mm from least-squares procedure on 25 reflections ($9 \le \theta \le 13^\circ$). Analytical absorption correction applied (Sheldrick, 1976); max./min. transmission factors 0.2419 and 0.0588. Space group from analysis. Total of 4286 reflections $(1 \le \theta \le 27.5^{\circ})$ measured in the range $-23 \le h \le 0, -12 \le k \le 0, -23 \le l \le 1$; in addition a number of high-angle Friedel pairs were measured. No significant variation in the net intensities of three reference reflections $(4\overline{74}, 4\overline{53}, 2\overline{61})$ measured every 3600 s. 3936 unique reflections; 2541 satisfied $I \ge 2.5\sigma(I)$. Structure solved from interpretation of Patterson map; full-matrix least-squares refinement of 118 parameters based on F (Sheldrick, 1976). Anisotropic thermal parameters for Hg, Cl and P; phenyl rings refined as hexagonal rigid groups (Sheldrick, 1976); H atoms included in the model at their calculated positions. At convergence R = 0.058, wR

© 1988 International Union of Crystallography